Temperature dependence of electrical resistivity of deformed and undeformed V-rich V₃Si single crystals

W. TAKAHARA*, Y. UMAKOSHI, T. YAMANE

Department of Materials Science and Engineering, Faculty of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565, Japan

The electrical resistivity $\rho(T)$ of V-rich V₃Si single crystals ($T_c \simeq 11.4$ K) was measured from 4.2 to 300 K along the directions of [100] and [111] before and after plastic deformation at 1573 K. Anisotropy of $\rho(T)$ was observed although V₃Si has the cubic A15 structure. Plastic deformation does not affect the normal-state $\rho(T)$ behaviour but changes the normal-superconducting transition width ΔT_c . At low temperatures ($T_c < T \le 40$ K), $\rho(T)$ varies approximately as T^n where $n \simeq 2.5$ and this behaviour does not contradict the $\rho(0)-\lambda$ "phase-diagram" plot proposed by Gurvitch, where λ is the electron-phonon coupling constant and $\rho(0)$ is the residual resistivity.

1. Introduction

The electrical resistivity $\rho(T)$ of A15 compounds as a function of temperature has been considerably studied because of their anomalous temperature dependence of $\rho(T)$ (electrical resistivity at temperature T) [1-3] and a relatively high superconducting transition temperature T_{c} , $\rho(T)$ for a normal metallic system shows a linear temperature dependence at high temperatures and it shows a $T^n(n = 3-5)$ temperature dependence at low temperatures. However, $\rho(T)$ for A15 compounds deviates from a linear temperature dependence, reaching a saturation value at high temperature. Furthermore, at low temperature, many A15 superconducting compounds with a transition temperature of $T_{s} > 15$ K show a T^{2} dependence of $\rho(T)$, but a few low- T_c A15 compounds such as Mo₃Ge and Nb₃Sb show a higher power-law dependence $T^n(n = 3-5)$ [1, 2, 4, 5].

Considerable progress towards understanding their anomalous behaviour of $\rho(T)$ and the relation between their superconductive properties and $\rho(T)$ was recently achieved. However, the $\rho(T)$ behaviour especially at low temperature has not as yet been fully explained [3, 6]. Gurvitch [7, 8] has suggested that the appearance of the T^2 temperature dependence of $\rho(T)$ depends on a combination of strong electron-phonon coupling and a disorder-induced effect. He has demonstrated that at low temperature there is a new universal transition in the resistivity behaviour of strongly coupled superconductors. Chiara et al. [9] reported that the results for their good stoichiometric V_3 Si multilayered films ($T_c \simeq 16$ K) agreed with Gurvitch's idea, but some exceptions were pointed out by Ramakrishnan and co-workers [3, 6, 10].

In A15 compounds, it is well known that lattice defects considerably influence both the normal-state resistivity and the transition temperature [11]. The effect of disordering on $\rho(T)$ was reported in irradiated Nb₃Sn, V₃Si, Nb₃Pt and Nb₃Al [1, 2]. Caton and Viswanathan [2] reported that the resistivity of irradiated V₃Si at low temperatures shows a T^2 dependence. In this paper, we report the temperature dependence of the electrical resistivity of V-rich offstoichiometric V₃Si single crystals with the A15 structure. The effect of high-temperature plastic deformation on $\rho(T)$ of these crystals is also presented.

2. Experimental procedure

The master ingot of V_3 Si was prepared by melting high-purity V and Si in a plasma-arc furnace. Rods of 7 mm diameter and 80 mm length were cut from the ingot by spark machining. A single crystal was grown from these rods by the floating zone method, using a single-crystal growth apparatus NEC SC-35HD with an optical heat source at a growth rate of 1.4 mm ks⁻¹ under a high-purity argon gas flow. The chemical composition of the crystal was analysed by energydispersive X-ray analysis. The A15 structure was confirmed by X-ray powder diffraction patterns. Small precipitates of vanadium-rich solid solution were observed by scanning electron microscopy but their volume fraction was too small to make a significant contribution to the resistivity.

Oriented compression samples with dimensions about $2 \text{ mm} \times 2 \text{ mm} \times 6 \text{ mm}$ were cut from the single crystal by spark machining. Compression tests were carried out at a nominal strain rate of $1.7 \times 10^{-4} \text{ s}^{-1}$

^{*} Present address: Department of Welding and Production Engineering, Faculty of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565, Japan.

TABLE I Sample characterization for V-rich V₃Si

Chemical composition (at % Si)	Lattice constant (nm)	<i>Т</i> _с (К)	ρ(300)ª (μΩ m)		$ ho(300)/ ho(T_c)^a$	
			[100]	[111]	[100]	[1 1 1]
22.1	0.4731	11.4	0.71	0.82	2.1	2.4
······	······································					

^a $\rho(300)$ and $\rho(T_c)$ are the resistivities at 300 K and just above T_c , respectively.

at 1573 K in a vacuum of $\sim 7 \times 10^{-3}$ Pa. The samples oriented near [100] and [111] were compressed to about 5 and 10% of plastic strain, respectively.

Samples with dimensions about $0.5 \text{ mm} \times 0.5 \text{ mm} \times 6 \text{ mm}$ for resistivity measurements were cut from the deformed samples and the single crystal by spark machining. The electrical resistivity $\rho(T)$ was measured from 4.2 to 300 K by a standard d.c. four-probe technique with a current of 5 mA along the direction near [100] and [111] with and without plastic strain.

3. Results and discussion

Table I shows the characterization of the V-rich V₃Si single crystals studied. Fig. 1 shows the resistivity data of undeformed samples as a function of the temperatures from 4.2 to 300 K. The $\rho(T)$ curve shows a negative deviation from its linear temperature dependence at high temperatures (T > 150 K). This behaviour is similar to that reported for several A15 compounds including V₃Si [2, 4, 12], Chevrel phases [13], and several silicides [12, 14]. Gurvitch [15] related these phenomena to the shortness of the conduction electron mean free path.

Although V_3Si has the cubic A15 structure and the electrical resistivity is thought to be independent of orientation, $\rho(T)$ along the [1 1 1] direction is slightly higher than that along the [100] direction. A similar anisotropy of resistivity in a cubic system was also reported in $CoSi_2$ [16]. The anisotropy observed in our samples should not be attributed to an intrinsic

1.0 0.9 0.8 [111 Electrical resistivity (μΩ m) 0.7 [100] 0.6 0.5 0.4 0.3 0.2 0.1 0 0 50 100 150 200 250 300 Temperature (K)

Figure 1 Resistivity of undeformed V-rich V_3Si as a function of temperature and crystallographic direction.

origin. Jurisch *et al.* [17] pointed out that there was a possibility of compositional fluctuations along the crystal growth axis. Although a significant compositional fluctuation along the growth direction was not detected by means of energy-dispersive X-ray analysis, the anisotropy of $\rho(T)$ observed here may arise from a very small compositional fluctuation. But, at the same time, it should be noted that Ullrich *et al.* [18] mentioned that the symmetry of a cubic V₃Si crystal was lowered by dislocations, and Paufler *et al.* [19] observed that needle-shaped subgrains were distributed parallel to the direction of crystal growth. Inhomogeneous distribution of dislocations and point defects caused by off-stoichiometry may also be responsible for the anisotropy of $\rho(T)$.

Fig. 2 shows the normal-superconducting transition behaviour of the samples for the [100] direction before and after deformation. Although neither the normal-state $\rho(T)$ behaviour nor the offset transition temperature changes very much after deformation, the onset transition temperature shifts to a higher temperature. The sample deformed parallel to [111] shows a similar behaviour. Mahajan *et al.* [20] observed no effect of high-temperature plastic deformation on the superconducting transition temperature for [110] deformed crystals. The V₃Si crystals are deformed by $\{100\}\langle 010 \rangle$ slip systems [20] and even after dislocations pass through the crystals, stress relief and atomic reordering are allowed in the cooling process

Figure 2 Normal-superconducting transition behaviour of V-rich V₃Si before and after deformation for [100] direction. A and B show the results of the undeformed sample and the sample deformed $\sim 5\%$, respectively.

after deformation. Therefore, the offset transition temperature T_c is independent of the plastic deformation at high temperatures.

Quyen *et al.* [21] reported that the T_c of V₃Si showed a strong compositional dependence, and this may be due to lattice defects formed by the compositional deviation from stoichiometry; the excess V or Si of off-stoichiometry produces a decrease or increase in T_c , respectively. Dislocations may act as sites to annihilate and trap lattice defects, and suppress the effect of lattice defects caused by excess V of off-stoichiometry. A rearrangement of lattice defects around dislocations would locally improve the superconductivity and cause the increase of the onset transition temperature.

The resistivity at low temperatures can be written as

$$\rho(T) = \rho_0 + AT^n \tag{1}$$

where ρ_0 is the residual resistivity extrapolated to zero Kelvin and A and n are constants. The fitting analysis is achieved by minimizing the error S of a least-square fit. S is given by

$$S = \sum_{i=1}^{N} [\rho_i(T)_{\text{meas}} - \rho_i(T)_{\text{fit}}]^2$$
(2)

where N is the number of data points in the fitted region. The quality of the fit is determined by a parameter R defined as

$$R = \left(S \sqrt{\sum_{i=1}^{N} \left[\rho_i(T)_{\text{meas}} \right]^2} \right)^{1/2}$$
(3)

Table II shows the fitting analysis for the resistivity of the undeformed sample oriented parallel to [100] in the temperature range $T_c < T \lesssim 40$ K. The *n* values of all the samples, with and without plastic strains for both directions, are equal to 2.5 ± 0.2 .

Gurvitch [7, 8] pointed out that a universal transition in the resistivity behaviour of strongly coupled superconductors could exist in the temperature range between T_c and $0.1\Theta_D$, where Θ_D is the Debye temperature. He suggested that the electron-phonon coupling λ could be estimated by using a $\rho(0) - \lambda$ "phasediagram" plot. In our data, the V-rich V₃Si samples have $n \simeq 2.5$, $T_c \simeq 11.4$ K and a residual resistivity $\rho_0 \simeq 0.34 \,\mu\Omega$ m. Considering $n \simeq 2.5$, that is in the T^3-T^2 transition region, we obtain electron-phonon coupling $\lambda \simeq 1$ from his plot [8]. Gurvitch mentioned that it is disputed whether $\lambda \simeq 1$ or $\lambda \simeq 2$ in V₃Si; he suggested $\lambda \simeq 2$ using both his calculation and his $\rho(0) - \lambda$ plot [7, 8]. But in our data, even using his $\rho(0) - \lambda$ plot, we obtain $\lambda \simeq 1$ in V-rich V₃Si. Of course, our sample is V-rich and $T_c \simeq 11.4$ K, which is lower than the highest values $T_c \simeq 17$ K obtained for a stoichiometric composition, so the λ value may be lower

TABLE II Resistivity analysis of undeformed V-rich V₃Si single crystal for [100] direction in the temperature range $T_{\rm c} < T \lesssim 40$ K

ρ ₀ (μ Ω m)	$A = (\mu \Omega \text{ m K}^{-2.5})$	n	$S (\mu \Omega^2 m^2)$	R
0.34	1.62×10^{-6}	2.5	1.50×10^{-4}	0.003 16

than that of stoichiometric V_3Si . Therefore, we consider that the result that $n \simeq 2.5$ for our V-rich V_3Si samples does not contradict Gurvitch's plot.

4. Conclusions

1. Anisotropy of $\rho(T)$ for V-rich V₃Si single crystals was observed. $\rho(T)$ along the [111] direction was slightly higher than that along the [100] direction. This anisotropy may arise not only from fluctuations of composition but also from dislocations and from point defects caused by off-stoichiometry.

2. The $\rho(T)$ behaviour in the normal state and the offset transition temperature did not change very much after plastic deformation, but a slight increase of the onset transition temperature was observed for both directions. This increase would be due to local atomic rearrangement around dislocations.

3. At low temperatures between T_c and 40 K, $\rho(T)$ for V-rich V₃Si ($T_c \simeq 11.4$ K) varies approximately as T^n where $n \simeq 2.5$. This $\rho(T)$ behaviour does not contradict the $\rho(0)$ - λ "phase-diagram" plot proposed by Gurvitch.

References

- 1. M. GURVITCH, A. K. GHOSH, H. LUTZ and M. STRONGIN, *Phys. Rev. B* 22 (1980) 128.
- 2. R. CATON and R. VISWANATHAN, ibid. 25 (1982) 179.
- 3. S. RAMAKRISHNAN, A. K. NIGAM and GIRISH CHAN-DRA, *ibid.* **34** (1986) 6166.
- M. GURVITCH, A. K. GHOSH, B. L. GYORFFY, H. LUTZ, O. F. KAMMERER, J. S. ROSNER and M. STRONGIN, *Phys. Rev. Lett.* 41 (1978) 1616.
- G. W. WEBB, Z. FISK, J. E. ENGELHARDT and S. D. BADER, *Phys. Rev. B* 15 (1977) 2624.
- 6. S. RAMAKRISHNAN and GIRISH CHANDRA, *ibid.* 38 (1988) 9245.
- 7. M. GURVITCH, Physica B 135 (1985) 276.
- 8. Idem, Phys. Rev. Lett. 56 (1986) 647.
- 9. A. DI CHIARA, U. SCOTTI DI UCCIO, M. SENATORE and L. MARITATO, J. Low Temp. Phys. 62 (1986) 385.
- 10. S. RAMAKRISHNAN and GIRISH CHANDRA, Phys. Rev. Lett. 57 (1986) 1961.
- 11. L. R. TESTARDI, Cryogenics 17 (1977) 67.
- 12. F. NAVA, O. BISI and K. N. TU, Phys. Rev. B 34 (1986) 6143.
- 13. C. S. SUNANDANA, J. Phys. C 12 (1979) L165.
- F. NAVA, E. MAZZEGA, M. MICHELINI, O. LABORDE, O. THOMAS, J. P. SENATEUR and R. MADAR, J. Appl. Phys. 65 (1989) 1584.
- 15. M. GURVITCH, Phys. Rev. B 24 (1981) 7404.
- 16. T. HIRANO and M. KAISE, J. Appl. Phys. 68 (1990) 627.
- 17. M. JURISCH, K. H. BERTHEL and H. J. ULLRICH, Phys. Status Solidi (a) 44 (1977) 277.
- H. J. ULLRICH, U. REINHOLD, S. DABRITZ, P. PAU-FLER, K. KLEINSTUCK and B. PIETRASS, *ibid.* 49 (1978) 323.
- 19. P. PAUFLER, E. ZEDLER, H. J. ULLRICH, K. H. BE-RTHEL, U. KRAMER, M. JURISCH, K. RICHTER and K. EICHLER, *ibid.* 44 (1977) 499.
- 20. S. MAHAJAN, J. H. WERNICK, G. Y. CHIN, S. NAKA-HARA and T. H. GEBALLE, *Appl. Phys. Lett.* 33 (1978) 972.
- N. H. QUYEN, P. PAUFLER, K. H. BERTHEL, M. BERTRAM, U. KRAMER, D. M. NGHIEP, A. SANMAR-TIN, A. GLADUN and K. KLEINSTUCK, *Phys. Status* Solidi (a) 56 (1979) 231.

Received 16 March 1992 and accepted 25 January 1993